The Rules of Higher Exponents

Exponent Rules Matching:
$(a b)^{n}=$
$\left(\frac{1}{b}\right)^{n}=$
$a^{n} \div b^{n}$
a^{m+n}
$(a \div b)^{n}=$
$a^{m} \cdot a^{n}=$
$\left(\frac{1}{b^{n}}\right)$
$a^{m} \div a^{n}=$
a^{m-n}
$\left(a^{m}\right)^{n}=$
$a^{n} b^{n}$

Write the rule $\mathcal{A} \mathcal{N D}$ the answer:
$(6 \cdot 9)^{7}=$
$8^{7} \cdot 8^{8}=$
$\left(\frac{1}{5}\right)^{4}=$
$\left(11^{6}\right)^{9}=$
$(8 \cdot 3)^{4}=$
$(37 \div 5)^{2}=$
$16^{13} \div 16^{6}=$
$17^{4} \cdot 17^{17}=$
$7^{25} \div 7^{14}=$
$\left(\frac{1}{7}\right)^{8}=$
$\left(19^{7}\right)^{6}=$
$\left(\frac{1}{8}\right)^{9}=$
$(41 \div 3)^{7}=$
$13^{14} \div 13^{8}=$
$\left(4^{3}\right)^{6}=$
$(8 \cdot 6)^{5}=$
$(16 \div 13)^{2}=$

The Rules of Higher Exponents

Exponent Rules Matching:

$a^{m} \cdot a^{n}=$	$a^{n} \div b^{n}$
$a^{m} \div a^{n}=$	$a^{n} b^{n}$
$(a b)^{n}=$	a^{m+n}
$\left(\frac{1}{b}\right)^{n}=$	$\left(\frac{1}{b^{n}}\right)$
$(a \div b)^{n}=$	a^{m-n}
$\left(a^{m}\right)^{n}=$	$a^{m n}$
$6^{14} \cdot 6^{7}=$	$\left(5^{7}\right)^{7}=$
$(9 \cdot 8)^{3}=$	$(9 \cdot 11)^{12}=$
$(15 \div 4)^{3}=$	$83^{6} \cdot 83^{7}=$
$\left(\frac{1}{3}\right)^{6}=$	$13^{17} \div 13^{9}=$
$12^{16} \div 12^{9}=$	$\left(\frac{1}{4}\right)^{11}=$
$\left(11^{4}\right)^{8}=$	$(26 \div 5)^{7}=$
$\left(\frac{1}{9}\right)^{3}=$	$21^{9} \div 21^{6}=$
$(17 \cdot 11)^{2}=$	$\left(19^{8}\right)^{9}=$
$(31 \div 7)^{5}=$	$4^{6} \cdot 4^{4}=$

$$
\begin{aligned}
& (6 \cdot 9)^{7}=a^{n} b^{n}=6^{7} \cdot 9^{7} \\
& \left(\frac{1}{5}\right)^{4}=\left(\frac{1}{b^{n}}\right)=\left(\frac{1}{5^{4}}\right) \\
& (37 \div 5)^{2}=a^{n} \div b^{n}=37^{2} \div 5^{2} \\
& 17^{4} \cdot 17^{17}=a^{m+n}=17^{21} \\
& 7^{25} \div 7^{14}=a^{m-n}=7^{11} \\
& \left(19^{7}\right)^{6}=a^{m n}=19^{42} \\
& \left(\frac{1}{8}\right)^{9}=\left(\frac{1}{b^{n}}\right)=\left(\frac{1}{8^{9}}\right) \\
& (8 \cdot 6)^{5}=a^{n} b^{n}=8^{5} 6^{5} \\
& (16 \div 13)^{2}=a^{n} \div b^{n}=16^{2} \div 13^{2}
\end{aligned}
$$

$$
8^{7} \cdot 8^{8}=a^{m+n}=8^{15}
$$

$$
\left(11^{6}\right)^{9}=a^{m n}=11^{54}
$$

$$
(8 \cdot 3)^{4}=a^{n} b^{n}=8^{4} \cdot 3^{4}
$$

$$
16^{13} \div 16^{6}=a^{m-n}=16^{7}
$$

$$
\left(\frac{1}{7}\right)^{8}=\left(\frac{1}{b^{n}}\right)=\left(\frac{1}{7^{8}}\right)
$$

$$
(41 \div 3)^{7}=a^{n} \div b^{n}=41^{7} \div 3^{7}
$$

$$
13^{14} \div 13^{8}=a^{m-n}=13^{6}
$$

$$
\left(4^{3}\right)^{6}=a^{m n}=4^{18}
$$

$$
7^{4} \cdot 7^{8}=a^{m+n}=7^{12}
$$

$6^{14} \cdot 6^{7}=a^{m+n}=6^{21}$
$(9 \cdot 8)^{3}=a^{n} b^{n}=9^{3} 8^{3}$
$(15 \div 4)^{3}=a^{n} \div b^{n}=15^{3} \div 4^{3}$
$\left(\frac{1}{3}\right)^{6}=\left(\frac{1}{b^{n}}\right)=\left(\frac{1}{3^{6}}\right)$
$12^{16} \div 12^{9}=a^{m-n}=12^{7}$
$\left(11^{4}\right)^{8}=11^{32}$
$\left(\frac{1}{9}\right)^{3}=\left(\frac{1}{b^{n}}\right)=\left(\frac{1}{9^{3}}\right)$
$(17 \cdot 11)^{2}=a^{n} b^{n}=17^{2} 11^{2}$
$(31 \div 7)^{5}=a^{n} \div b^{n}=31^{5} \div 7^{5}$
$\left(5^{7}\right)^{7}=a^{m n}=5^{49}$
$(9 \cdot 11)^{12}=a^{n} b^{n}=9^{12} 11^{12}$
$83^{6} \cdot 83^{7}=a^{m+n}=83^{13}$
$13^{17} \div 13^{9}=a^{m-n}=13^{8}$
$\left(\frac{1}{4}\right)^{11}=\left(\frac{1}{b^{n}}\right)=\left(\frac{1}{4^{11}}\right)$
$(26 \div 5)^{7}=a^{n} \div b^{n}=26^{7} \div 5^{7}$
$21^{9} \div 21^{6}=a^{m-n}=21^{3}$
$\left(19^{8}\right)^{9}=a^{m n}=19^{72}$
$4^{6} \cdot 4^{4}=a^{m+n}=4^{10}$

Exponent Rules Matching Answers:

$$
\begin{aligned}
& (a b)^{n}=a^{n} b^{n} \\
& \left(\frac{1}{b}\right)^{n}=\left(\frac{1}{b^{n}}\right) \\
& (a \div b)^{n}=a^{n} \div b^{n} \\
& a^{m} \cdot a^{n}=a^{m+n} \\
& a^{m} \div a^{n}=a^{m-n} \\
& \left(a^{m}\right)^{n}=a^{m n}
\end{aligned}
$$

